Logo Search packages:      
Sourcecode: pari version File versions

arith2.c

/* $Id: arith2.c,v 1.18.2.4 2004/10/16 12:33:31 kb Exp $

Copyright (C) 2000  The PARI group.

This file is part of the PARI/GP package.

PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.

Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */

/*********************************************************************/
/**                                                                 **/
/**                     ARITHMETIC FUNCTIONS                        **/
/**                        (second part)                            **/
/**                                                                 **/
/*********************************************************************/
#include "pari.h"

extern GEN arith_proto(long f(GEN), GEN x, int do_error);
extern GEN arith_proto2(long f(GEN,GEN), GEN x, GEN n);
extern GEN garith_proto(GEN f(GEN), GEN x, int do_error);
extern GEN garith_proto2gs(GEN f(GEN,long), GEN x, long y);
static long court_p[]={evaltyp(t_INT)|m_evallg(3),evalsigne(1)|evallgefint(3),0};

/***********************************************************************/
/**                                                                   **/
/**                          PRIME NUMBERS                            **/
/**                                                                   **/
/***********************************************************************/

GEN
prime(long n)
{
  byteptr p = diffptr;
  long c, prime = 0;

  if (n <= 0) err(talker, "n-th prime meaningless if n = %ld",n);
  while (n--)
  {
    c = *p++; if (!c) err(primer1);
    prime += c;
  }
  return stoi(prime);
}

GEN
primes(long n)
{
  byteptr p = diffptr;
  long c, prime = 0;
  GEN y,z;

  if (n < 0) n = 0;
  z = y = cgetg(n+1,t_VEC);
  while (n--)
  {
    c = *p++; if (!c) err(primer1);
    prime += c; *++z = lstoi(prime);
  }
  return y;
}

/* Building/Rebuilding the diffptr table. Incorporates Ilya Zakharevich's
 * block sweep algorithm  (see pari-dev-111, 25 April 1998).  The actual work
 * is done by the following two subroutines;  the user entry point is the
 * function initprimes() below.  initprimes1() is the old algorithm, called
 * when maxnum (size) is moderate.
 */
static byteptr
initprimes1(long size, long *lenp, long *lastp)
{
  long k;
  byteptr q,r,s,fin, p = (byteptr) gpmalloc(size+2);

  memset(p, 0, size + 2); fin = p + size;
  for (r=q=p,k=1; r<=fin; )
  {
    do { r+=k; k+=2; r+=k; } while (*++q);
    for (s=r; s<=fin; s+=k) *s=1;
  }
  r=p; *r++=2; *r++=1; /* 2 and 3 */
  for (s=q=r-1; ; s=q)
  {
    do q++; while (*q);
    if (q>fin) break;
    *r++ = (q-s) << 1;
  }
  *r++=0;
  *lenp = r - p;
  *lastp = ((s - p) << 1) + 1;
#if 0
  fprintferr("initprimes1: q = %ld, len = %ld, last = %ld\n",
           q, *lenp, *lastp);
#endif
  return (byteptr) gprealloc(p,r-p,size + 2);
}

#define PRIME_ARENA (512 * 1024)

/* Here's the workhorse.  This is recursive, although normally the first
   recursive call will bottom out and invoke initprimes1() at once.
   (Not static;  might conceivably be useful to someone in library mode) */
byteptr
initprimes0(ulong maxnum, long *lenp, long *lastp)
{
  long k, size, alloced, asize, psize, rootnum, curlow, last, remains, need;
  byteptr q,r,s,fin, p, p1, fin1, plast, curdiff;

#if 0
  fprintferr("initprimes0: called for maxnum = %lu\n", maxnum);
#endif
  if (maxnum <= 1ul<<17)      /* Arbitrary. */
    return initprimes1(maxnum>>1, lenp, lastp);

  maxnum |= 1;                /* make it odd. */

  /* Checked to be enough up to 40e6, attained at 155893 */
  size = (long) (1.09 * maxnum/log((double)maxnum)) + 145;
  p1 = (byteptr) gpmalloc(size);
  rootnum = (long) sqrt((double)maxnum); /* cast it back to a long */
  rootnum |= 1;
#if 0
  fprintferr("initprimes0: rootnum = %ld\n", rootnum);
#endif
  {
    byteptr p2 = initprimes0(rootnum, &psize, &last); /* recursive call */
    memcpy(p1, p2, psize); free(p2);
  }
  fin1 = p1 + psize - 1;
  remains = (maxnum - rootnum) >> 1; /* number of odd numbers to check */

  need = 100 * rootnum;       /* Make % overhead negligeable. */
  if (need < PRIME_ARENA) need = PRIME_ARENA;
  if (avma - bot < need>>1) { /* need to do our own allocation */
    alloced = 1; asize = need;
  } else {              /* scratch area is free part of PARI stack */
    alloced = 0; asize = avma - bot;
  }
  if (asize > remains) asize = remains + 1;/* + room for a sentinel byte */
  if (alloced)
    p = (byteptr) gpmalloc(asize);
  else
    p = (byteptr) bot;
  fin = p + asize - 1;        /* the 0 sentinel goes at fin. */
  curlow = rootnum + 2;       /* We know all primes up to rootnum (odd). */
  curdiff = fin1;

  /* During each iteration p..fin-1 represents a range of odd
     numbers.  plast is a pointer which represents the last prime seen,
     it may point before p..fin-1. */
  plast = p - ((rootnum - last) >> 1) - 1;
  while (remains)
  {
    if (asize > remains)
    {
      asize = remains + 1;
      fin = p + asize - 1;
    }
    memset(p, 0, asize);
    /* p corresponds to curlow.  q runs over primediffs.  */
    for (q = p1+2, k = 3; q <= fin1; k += *q++)
    {
      /* The first odd number which is >= curlow and divisible by p
       equals (if curlow > p)
       the last odd number which is <= curlow + 2p - 1 and 0 (mod p)
       which equals
       p + the last even number which is <= curlow + p - 1 and 0 (mod p)
       which equals
       p + the last even number which is <= curlow + p - 2 and 0 (mod p)
       which equals
       p + curlow + p - 2 - (curlow + p - 2)) % 2p.
       */
      long k2 = k*k - curlow;

      if (k2 > 0)
      {
      r = p + (k2 >>= 1);
      if (k2 > remains) break; /* Guard against an address wrap. */
      } else
      r = p - (((curlow+k-2) % (2*k)) >> 1) + k - 1;
      for (s = r; s < fin; s += k) *s = 1;
    }
    /* now q runs over addresses corresponding to primes */
    for (q = p; ; plast = q++)
    {
      while (*q) q++;         /* use 0-sentinel at end */
      if (q >= fin) break;
      *curdiff++ = (q - plast) << 1;
    }
    plast -= asize - 1;
    remains -= asize - 1;
    curlow += ((asize - 1)<<1);
  } /* while (remains) */
  last = curlow - ((p - plast) << 1);
  *curdiff++ = 0;       /* sentinel */
  *lenp = curdiff - p1;
  *lastp = last;
  if (alloced) free(p);
  return (byteptr) gprealloc(p1, *lenp, size);
}
#if 0 /* not yet... GN */
/* The diffptr table will contain at least 6548 entries (up to and including
   the 6547th prime, 65557, and the terminal null byte), because the isprime/
   small-factor-extraction machinery wants to depend on everything up to 65539
   being in the table, and we might as well go to a multiple of 4 Bytes.--GN */

void
init_tinyprimes_tridiv(byteptr p);  /* in ifactor2.c */
#endif

static ulong _maxprime = 0;

ulong
maxprime() { return _maxprime; }

byteptr
initprimes(long maxnum)
{
  long len, last;
  byteptr p;
  /* The algorithm must see the next prime beyond maxnum, whence the +257. */
  /* switch to unsigned: adding the 257 _could_ wrap to a negative number. */
  ulong maxnum1 = ((maxnum<65302?65302:maxnum)+257ul);

  if (maxnum1 > 436273000)
    err(talker,"impossible to have prestored primes > 436272743");

  p = initprimes0(maxnum1, &len, &last);
#if 0 /* not yet... GN */
  static int build_the_tables = 1;
  if (build_the_tables) { init_tinyprimes_tridiv(p); build_the_tables=0; }
#endif
  _maxprime = last; return p;
}

static void
cleanprimetab(void)
{
  long i,j, lp = lg(primetab);

  for (i=j=1; i < lp; i++)
    if (primetab[i]) primetab[j++] = primetab[i];
  setlg(primetab,j);
}

/* primes is a single element or a row vector with "primes" to add to
 * primetab. If the "prime" shares a non-trivial factor with another element
 * in primetab, it is taken into account.
 */
GEN
addprimes(GEN prime)
{
  long i,tx, av = avma, lp = lg(primetab);
  GEN p1,p2;

  if (!prime) return primetab;
  tx = typ(prime);
  if (is_vec_t(tx))
  {
    for (i=1; i < lg(prime); i++) addprimes((GEN) prime[i]);
    return primetab;
  }
  if (tx != t_INT) err(typeer,"addprime");
  if (is_pm1(prime)) return primetab;
  i = signe(prime);
  if (i == 0) err(talker,"can't accept 0 in addprimes");
  if (i < 0) prime=absi(prime); 

  p1=cgetg(1,t_VEC);
  for (i=1; i < lp; i++)
  {
    p2 = mppgcd((GEN) primetab[i], prime);
    if (! gcmp1(p2))
    {
      if (!egalii(prime,p2)) p1=concatsp(p1,p2);
      p1 = concatsp(p1,divii((GEN)primetab[i],p2));
      gunclone((GEN)primetab[i]); primetab[i]=0;
    }
  }
  if (i == NUMPRTBELT+1 && lg(p1) == 1)
    err(talker,"extra primetable overflows");
  primetab[i] = lclone(prime); setlg(primetab, lp+1);
  cleanprimetab();
  if (lg(p1) > 1) addprimes(p1);
  avma=av; return primetab;
}

static GEN
removeprime(GEN prime)
{
  long i;

  if (typ(prime) != t_INT) err(typeer,"removeprime");
  for (i=lg(primetab) - 1; i; i--)
    if (absi_equal((GEN) primetab[i], prime))
    {
      gunclone((GEN)primetab[i]); primetab[i]=0;
      cleanprimetab(); break;
    }
  if (!i) err(talker,"prime %Z is not in primetable", prime);
  return primetab;
}

GEN
removeprimes(GEN prime)
{
  long i,tx;

  if (!prime) return primetab;
  tx = typ(prime);
  if (is_vec_t(tx))
  {
    if (prime == primetab)
    {
      for (i=1; i < lg(prime); i++) gunclone((GEN)prime[i]);
      setlg(prime, 1);
    }
    else
    {
      for (i=1; i < lg(prime); i++) removeprime((GEN) prime[i]);
    }
    return primetab;
  }
  return removeprime(prime);
}

/***********************************************************************/
/**                                                                   **/
/**       COMPUTING THE MATRIX OF PRIME DIVISORS AND EXPONENTS        **/
/**                                                                   **/
/***********************************************************************/

/* Configure may/should define this to 1 if MPQS is not installed --GN */
#ifndef decomp_default_hint
#define decomp_default_hint 0
#endif

/* Some overkill removed from this  (15 spsp for an integer < 2^32 ?!).
   Should really revert to isprime() once the new primality tester is ready
   --GN */
#define pseudoprime(p) millerrabin(p,3*lgefint(p))

/* where to stop trial dividing in factorization */

static long
tridiv_bound(GEN n, long all)
{
  long size = expi(n) + 1;
  if (all > 1)                /* bounded factoring */
    return all;               /* use the given limit */
  if (all == 0)
    return VERYBIGINT;        /* smallfact() case */
  if (size <= 32)
    return 16384;
  else if (size <= 512)
    return (size-16) << 10;
  return 1L<<19;        /* Rho will generally be faster above this */
}

/********** about to become obsolete --GN **********/
#if 0
/* If flag != 1, use the new MPQS code: Try to factor N using ECM if flag = 2
 * and N is not too small, followed by MPQS, or just MPQS otherwise.
 */
static GEN
find_fact(GEN N, long *flag)
{
  GEN f;

  if (*flag == 2)
  {
    if ((f = pollardbrent(N)))      /* assignment */
      return f;
    f = ellfacteur(N, 0);
    if (!f)
    {
      /* *flag = 0; */
      f = mpqs(N);
    }
  }
  else if (*flag == 1)
  {
    if ((f = pollardbrent(N)))      /* assignment */
      return f;
    f = ellfacteur(N, 1);
  }
  else
    f = mpqs(N);        /* may bail out and call ellfacteur(_,1) */
                        /* (this is to be changed) */

  return f;
}
#endif
/***************************************************/

/* function imported from ifactor1.c */
long
ifac_decomp(GEN n, long hint);
long
ifac_decomp_break(GEN n, long (*ifac_break)(GEN n, GEN pairs, GEN here, GEN state),
              GEN state, long hint);

static GEN
aux_end(GEN n, long nb)
{
  GEN p1,p2, z = (GEN)avma;
  long i;

  if (n) gunclone(n);
  p1=cgetg(nb+1,t_COL);
  p2=cgetg(nb+1,t_COL);
  for (i=nb; i; i--)
  {
    p2[i] = (long)z; z += lg(z);
    p1[i] = (long)z; z += lg(z);
  }
  z[1] = (long)p1;
  z[2] = (long)p2;
  if (nb) (void)sort_factor_gen(z,cmpii);
  return z;
}

GEN 
auxdecomp1(GEN n, long (*ifac_break)(GEN n, GEN pairs, GEN here, GEN state),
              GEN state, long all, long hint)
{
  long pp[] = { evaltyp(t_INT)|m_evallg(3), evalsigne(1)|evallgefint(3),2,0 };
  long nb = 0,i,k,lim1,av,lp;
  byteptr d=diffptr+1;

  if (typ(n) != t_INT) err(arither1);
  i=signe(n); if (!i) err(arither2);
  cgetg(3,t_MAT);
  if (i<0) { stoi(-1); stoi(1); nb++; }
  if (is_pm1(n)) return aux_end(NULL,nb);

  n = gclone(n);  setsigne(n,1);
  i = vali(n);
  if (i)
  {
    stoi(2); stoi(i); nb++;
    av=avma; affii(shifti(n,-i), n); avma=av;
  }
  if (is_pm1(n)) return aux_end(n,nb);
  lim1 = tridiv_bound(n, all);

  /* trial division */
  while (*d && pp[2] <= lim1)
  {
    pp[2] += *d++;
    if (mpdivis(n,pp,n))
    {
      nb++; k=1; while (mpdivis(n,pp,n)) k++;
      icopy(pp); stoi(k);
      if (is_pm1(n)) return aux_end(n,nb);
    }
  }

  /* pp = square of biggest p tried so far */
  av=avma; setlg(pp,4); affii(sqri(pp),pp); avma=av;
  if (cmpii(pp,n) > 0)
  {
    nb++;
    icopy(n); stoi(1); return aux_end(n,nb);
  }

  /* trial divide by the "special primes" (usually huge composites...) */
  lp = lg(primetab); k=0;
  for (i=1; i<lp; i++)
    if (mpdivis(n,(GEN) primetab[i],n))
    {
      nb++; k=1; while (mpdivis(n,(GEN) primetab[i],n)) k++;
      icopy((GEN) primetab[i]); stoi(k);
      if (is_pm1(n)) return aux_end(n,nb);
    }

  /* test primality (unless all != 1 (i.e smallfact))*/
  if ((k && cmpii(pp,n) > 0) || (all==1 && pseudoprime(n)))
  {
    nb++;
    icopy(n); stoi(1); return aux_end(n,nb);
  }

  /* now we have a large composite.  Use hint as is if all==1 */
  if (all!=1) hint = 15; /* turn off everything except pure powers */
  if (ifac_break && (*ifac_break)(n,NULL,NULL,state))
    /*Initialize ifac_break*/
  {
    if (DEBUGLEVEL >= 3)
      fprintferr("IFAC: (Partial fact.) Initial stop requested.\n");
  }
  else
    nb += ifac_decomp_break(n, ifac_break, state, hint);

  return aux_end(n, nb);
}
/* state is an array with 2 elements:
 * state[1]: current unfactored part.
 * state[2]: limit.
 */
static long ifac_break_limit(GEN n, GEN pairs, GEN here, GEN state)
{
  ulong ltop=avma;
  int res;
  if (!here)
    /* Initial call.
     * Small prime have been removed since start, 
     * and n is the new unfactored part.
     * Note: the result is affect()ed to state[1] to preserve stack.
     */
    affii(n,(GEN)state[1]);
  else
  {
    /*Compute the primary factor found.*/
    GEN p=powgi((GEN)here[0],(GEN)here[1]); 
    if (DEBUGLEVEL>=3)
      fprintferr("IFAC: Stop: Primary factor: %Z\n",p);
    /*divide the unfactored part by the primary factor and assign the
      result to state[1]*/
    diviiz((GEN)state[1],p,(GEN)state[1]);
  }
  if (DEBUGLEVEL>=3)
    fprintferr("IFAC: Stop: remaining %Z\n",state[1]);
  /*check the stopping criterion*/ 
  res=cmpii((GEN)state[1],(GEN)state[2])<=0;
  /*restore the stack.*/
  avma=ltop;
  return res;
}

static GEN
auxdecomp0(GEN n, long all, long hint)
{
  return auxdecomp1(n, NULL, gzero, all, hint);
}

GEN
auxdecomp(GEN n, long all)
{
  return auxdecomp0(n,all,decomp_default_hint);
}

/* see before ifac_crack() in ifactor1.c for current semantics of `hint'
   (factorint's `flag') */
GEN
factorint(GEN n, long flag)
{
  return auxdecomp0(n,1,flag);
}

GEN
decomp(GEN n)
{
  return auxdecomp0(n,1,decomp_default_hint);
}

/* Factor until the unfactored part is smaller than limit.
 */
GEN
decomp_limit(GEN n, GEN limit)
{
  GEN state;
  /*Initialise state.*/
  state=cgetg(3,t_VEC);
  /* In fact this is mainly done to allocate memory for
   * affect(). Currently state[1] value is discarded in the initial call
   * of ifac_break_limit 
   */
  state[1]=licopy(n);
  state[2]=lcopy(limit);
  return auxdecomp1(n, &ifac_break_limit, state, 1, decomp_default_hint);
}

GEN
smallfact(GEN n)
{
  return boundfact(n,0);
}

GEN
gboundfact(GEN n, long lim)
{
  return garith_proto2gs(boundfact,n,lim);
}

GEN
boundfact(GEN n, long lim)
{
  GEN p1,p2,p3,p4,p5,y;
  long av = avma,tetpil;

  if (lim<=1) lim=0;
  switch(typ(n))
  {
    case t_INT:
      return auxdecomp(n,lim);
    case t_FRACN:
      n=gred(n); /* fall through */
    case t_FRAC:
      p1=auxdecomp((GEN)n[1],lim);
      p2=auxdecomp((GEN)n[2],lim);
      p4=concatsp((GEN)p1[1],(GEN)p2[1]);
      p5=concatsp((GEN)p1[2],gneg((GEN)p2[2]));
      p3=indexsort(p4);

      tetpil=avma; y=cgetg(3,t_MAT);
      y[1]=(long)extract(p4,p3);
      y[2]=(long)extract(p5,p3);
      return gerepile(av,tetpil,y);
  }
  err(arither1);
  return NULL; /* not reached */
}

/***********************************************************************/
/**                                                                   **/
/**                    BASIC ARITHMETIC FUNCTIONS                     **/
/**                                                                   **/
/***********************************************************************/

/* functions imported from ifactor1.c */
long
ifac_moebius(GEN n, long hint);

long
ifac_issquarefree(GEN n, long hint);

long
ifac_omega(GEN n, long hint);

long
ifac_bigomega(GEN n, long hint);

GEN
ifac_totient(GEN n, long hint);

GEN
ifac_numdiv(GEN n, long hint);

GEN
ifac_sumdiv(GEN n, long hint);

GEN
ifac_sumdivk(GEN n, long k, long hint);

GEN
gmu(GEN n)
{
  return arith_proto(mu,n,1);
}

long
mu(GEN n)
{
  byteptr d = diffptr+1;      /* point at 3 - 2 */
  GEN p;
  long av = avma, lim1, s, v;

  if (typ(n) != t_INT) err(arither1);
  if (!signe(n)) err(arither2);
  if (is_pm1(n)) return 1;
  v = vali(n);
  if (v>1) return 0;
  s = v ? -1 : 1;
  n=absi(shifti(n,-v)); p=court_p; p[2]=2;
  if (is_pm1(n)) return s;
  lim1 = tridiv_bound(n,1);

  while (*d && p[2] < lim1)
  {
    p[2] += *d++;
    if (mpdivis(n,p,n))
    {
      if (divise(n,p)) { avma=av; return 0; }
      s = -s; if (is_pm1(n)) { avma=av; return s; }
    }
  }
  /* we normally get here with p==nextprime(PRE_TUNE), which will already
     have been tested against n, so p^2 >= n  (instead of p^2 > n)  is
     enough to guarantee n is prime */
  if (cmpii(sqri(p),n) >= 0 || pseudoprime(n)) { avma=av; return -s; }
  /* large composite without small factors */
  v = ifac_moebius(n, decomp_default_hint);
  avma=av;
  return (s<0 ? -v : v);      /* correct also if v==0 */
}

GEN
gissquarefree(GEN x)
{
  return arith_proto(issquarefree,x,0);
}

long
issquarefree(GEN x)
{
  long av=avma,lim1,tx;
  GEN p;

  if (gcmp0(x)) return 0;
  tx=typ(x);
  if (tx == t_INT)
  {
    long v;
    byteptr d=diffptr+1;
    if (is_pm1(x)) return 1;
    if((v = vali(x)) > 1) return 0;
    x=absi(shifti(x,-v)); p=court_p; p[2]=2;
    if (is_pm1(x)) return 1;
    lim1 = tridiv_bound(x,1);

    while (*d && p[2] < lim1)
    {
      p[2] += *d++;
      if (mpdivis(x,p,x))
      {
      if (divise(x,p)) { avma=av; return 0; }
      if (is_pm1(x)) { avma=av; return 1; }
      }
    }
    if (cmpii(sqri(p),x) >= 0 || pseudoprime(x)) { avma=av; return 1; }
    v = ifac_issquarefree(x, decomp_default_hint);
    avma=av;
    return v;
  }
  if (tx != t_POL) err(typeer,"issquarefree");
  p = ggcd(x, derivpol(x));
  avma=av; return (lgef(p)==3);
}

GEN
gomega(GEN n)
{
  return arith_proto(omega,n,1);
}

long
omega(GEN n)
{
  byteptr d=diffptr+1;
  GEN p;
  long nb,av=avma,lim1,v;

  if (typ(n) != t_INT) err(arither1);
  if (!signe(n)) err(arither2);
  if (is_pm1(n)) return 0;
  v=vali(n);
  nb = v ? 1 : 0;
  n=absi(shifti(n,-v)); p=court_p; p[2]=2;
  if (is_pm1(n)) return nb;
  lim1 = tridiv_bound(n,1);

  while (*d && p[2] < lim1)
  {
    p[2] += *d++;
    if (mpdivis(n,p,n))
    {
      nb++; while (mpdivis(n,p,n)); /* empty */
      if (is_pm1(n)) { avma = av; return nb; }
    }
  }
  if (cmpii(sqri(p),n) >= 0 || pseudoprime(n)) { avma = av; return nb+1; }
  /* large composite without small factors */
  nb += ifac_omega(n, decomp_default_hint);
  avma=av; return nb;
}

GEN
gbigomega(GEN n)
{
  return arith_proto(bigomega,n,1);
}

long
bigomega(GEN n)
{
  byteptr d=diffptr+1;
  GEN p;
  long nb,av=avma,lim1,v;

  if (typ(n) != t_INT) err(arither1);
  if (!signe(n)) err(arither2);
  if (is_pm1(n)) return 0;
  nb=v=vali(n);
  n=absi(shifti(n,-v)); p=court_p; p[2]=2;
  if (is_pm1(n)) { avma = av; return nb; }
  lim1 = tridiv_bound(n,1);

  while (*d && p[2] < lim1)
  {
    p[2] += *d++;
    if (mpdivis(n,p,n))
    {
      do nb++; while (mpdivis(n,p,n));
      if (is_pm1(n)) { avma = av; return nb; }
    }
  }
  if (cmpii(sqri(p),n) >= 0 || pseudoprime(n)) { avma = av; return nb+1; }
  nb += ifac_bigomega(n, decomp_default_hint);
  avma=av; return nb;
}

GEN
gphi(GEN n)
{
  return garith_proto(phi,n,1);
}

GEN
phi(GEN n)
{
  byteptr d = diffptr+1;
  GEN p,m;
  long av = avma, lim1, v;

  if (typ(n) != t_INT) err(arither1);
  if (!signe(n)) err(arither2);
  if (is_pm1(n)) return gun;
  v=vali(n);
  n=absi(shifti(n,-v)); p=court_p; p[2]=2;
  m = (v > 1 ? shifti(gun,v-1) : stoi(1));
  if (is_pm1(n)) { return gerepileupto(av,m); }
  lim1 = tridiv_bound(n,1);

  while (*d && p[2] < lim1)
  {
    court_p[2] += *d++;
    if (mpdivis(n,p,n))
    {
      m = mulii(m,addsi(-1,p));
      while (mpdivis(n,p,n)) m = mulii(m,p);
      if (is_pm1(n)) { return gerepileupto(av,m); }
    }
  }
  if (cmpii(sqri(p),n) >= 0 || pseudoprime(n))
  {
    m = mulii(m,addsi(-1,n));
    return gerepileupto(av,m);
  }
  m = mulii(m, ifac_totient(n, decomp_default_hint));
  return gerepileupto(av,m);
}

GEN
gnumbdiv(GEN n)
{
  return garith_proto(numbdiv,n,1);
}

GEN
numbdiv(GEN n)
{
  byteptr d=diffptr+1;
  GEN p,m;
  long l, av=avma, lim1, v;

  if (typ(n) != t_INT) err(arither1);
  if (!signe(n)) err(arither2);
  if (is_pm1(n)) return gun;
  v=vali(n);
  n=absi(shifti(n,-v)); p=court_p; p[2]=2;
  m = stoi(v+1);
  if (is_pm1(n)) { return gerepileupto(av,m); }
  lim1 = tridiv_bound(n,1);

  while (*d && p[2] < lim1)
  {
    p[2] += *d++;
    l=1; while (mpdivis(n,p,n)) l++;
    m = mulsi(l,m); if (is_pm1(n)) { return gerepileupto(av,m); }
  }
  if(cmpii(sqri(p),n) >= 0 || pseudoprime(n))
  {
    m = shifti(m,1);
    return gerepileupto(av,m);
  }
  m = mulii(m, ifac_numdiv(n, decomp_default_hint));
  return gerepileupto(av,m);
}

GEN
gsumdiv(GEN n)
{
  return garith_proto(sumdiv,n,1);
}

GEN
sumdiv(GEN n)
{
  byteptr d=diffptr+1;
  GEN p,m,m1;
  long av=avma,lim1,v;

  if (typ(n) != t_INT) err(arither1);
  if (!signe(n)) err(arither2);
  if (is_pm1(n)) return gun;
  v=vali(n);
  n=absi(shifti(n,-v)); p=court_p; p[2]=2;
  m = (v ? addsi(-1,shifti(gun,v+1)) : stoi(1));
  if (is_pm1(n)) { return gerepileupto(av,m); }
  lim1 = tridiv_bound(n,1);

  while (*d && p[2] < lim1)
  {
    p[2] += *d++;
    if (mpdivis(n,p,n))
    {
      m1=addsi(1,p);
      while (mpdivis(n,p,n)) m1=addsi(1,mulii(p,m1));
      m = mulii(m1,m); if (is_pm1(n)) { return gerepileupto(av,m); }
    }
  }
  if(cmpii(sqri(p),n) >= 0 || pseudoprime(n))
  {
    m = mulii(m,addsi(1,n));
    return gerepileupto(av,m);
  }
  m = mulii(m, ifac_sumdiv(n, decomp_default_hint));
  return gerepileupto(av,m);
}

GEN
gsumdivk(GEN n, long k)
{
  return garith_proto2gs(sumdivk,n,k);
}

GEN
sumdivk(GEN n, long k)
{
  byteptr d=diffptr+1;
  GEN n1,p,m,m1,pk;
  long av=avma,k1,lim1,v;

  if (!k) return numbdiv(n);
  if (k==1) return sumdiv(n);
  if (typ(n) != t_INT) err(arither1);
  if (!signe(n)) err(arither2);
  if (is_pm1(n)) return gun;
  k1 = k; n1 = n;
  if (k==-1) { m=sumdiv(n); k=1; goto fin; }
  if (k<0)  k = -k;
  v=vali(n);
  n=absi(shifti(n,-v));
  p = court_p; p[2]=2; m=stoi(1);
  while (v--) { m=addsi(1,shifti(m,k)); }
  if (is_pm1(n)) goto fin;
  lim1 = tridiv_bound(n,1);

  while (*d && p[2] < lim1)
  {
    p[2] += *d++;
    if (mpdivis(n,p,n))
    {
      pk=gpuigs(p,k); m1=addsi(1,pk);
      while (mpdivis(n,p,n)) m1=addsi(1,mulii(pk,m1));
      m = mulii(m1,m); if (is_pm1(n)) goto fin;
    }
  }
  if(cmpii(sqri(p),n) >= 0 || pseudoprime(n))
  {
    pk=gpuigs(n,k);
    m = mulii(m,addsi(1,pk));
    goto fin;
  }
  m = mulii(m, ifac_sumdivk(n, k, decomp_default_hint));
 fin:
  if (k1 < 0) m = gdiv(m, gpowgs(n1,k));
  return gerepileupto(av,m);
}

/***********************************************************************/
/**                                                                   **/
/**                MISCELLANEOUS ARITHMETIC FUNCTIONS                 **/
/**         (all of these ultimately depend on auxdecomp())           **/
/**                                                                   **/
/***********************************************************************/

GEN
divisors(GEN n)
{
  long tetpil,av=avma,i,j,l;
  GEN *d,*t,*t1,*t2,*t3, nbdiv,e;
  
  if (typ(n) != t_MAT || lg(n) != 3) n = auxdecomp(n,1);

  e = (GEN) n[2], n = (GEN) n[1]; l = lg(n);
  if (l>1 && signe(n[1]) < 0) { e++; n++; l--; } /* skip -1 */
  nbdiv = gun;
  for (i=1; i<l; i++) 
  {
    e[i] = itos((GEN)e[i]);
    nbdiv = mulis(nbdiv,1+e[i]);
  }
  if (is_bigint(nbdiv) || (itos(nbdiv) & ~LGBITS))
    err(talker, "too many divisors (more than %ld)", LGBITS - 1);
  d = t = (GEN*) cgetg(itos(nbdiv)+1,t_VEC);
  *++d = gun;
  for (i=1; i<l; i++)
    for (t1=t,j=e[i]; j; j--,t1=t2)
      for (t2=d,t3=t1; t3<t2; )
      *++d = mulii(*++t3, (GEN)n[i]);
  tetpil=avma; return gerepile(av,tetpil,sort((GEN)t));
}

GEN
core(GEN n)
{
  long av=avma,tetpil,i;
  GEN fa,p1,p2,res=gun;

  fa=auxdecomp(n,1); p1=(GEN)fa[1]; p2=(GEN)fa[2];
  for (i=1; i<lg(p1); i++)
    if (mod2((GEN)p2[i])) res = mulii(res,(GEN)p1[i]);
  tetpil=avma; return gerepile(av,tetpil,icopy(res));
}

GEN
core2(GEN n)
{
  long av=avma,tetpil,i;

  GEN fa,p1,p2,p3,res=gun,res2=gun,y;

  fa=auxdecomp(n,1); p1=(GEN)fa[1]; p2=(GEN)fa[2];
  for (i=1; i<lg(p1); i++)
  {
    p3=(GEN)p2[i];
    if (mod2(p3)) res=mulii(res,(GEN)p1[i]);
    if (!gcmp1(p3)) res2=mulii(res2,gpui((GEN)p1[i],shifti(p3,-1),0));
  }
  tetpil=avma; y=cgetg(3,t_VEC);
  y[1]=(long)icopy(res); y[2]=(long)icopy(res2);
  return gerepile(av,tetpil,y);
}

GEN
core0(GEN n,long flag)
{
  return flag? core2(n): core(n);
}

GEN
coredisc(GEN n)
{
  long av=avma,tetpil,r;
  GEN p1=core(n);

  r=mod4(p1); if (signe(p1)<0) r = 4-r;
  if (r==1 || r==4) return p1;
  tetpil=avma; return gerepile(av,tetpil,shifti(p1,2));
}

GEN
coredisc2(GEN n)
{
  long av=avma,tetpil,r;
  GEN y,p1,p2=core2(n);

  p1=(GEN)p2[1]; r=mod4(p1); if (signe(p1)<0) r=4-r;
  if (r==1 || r==4) return p2;
  tetpil=avma; y=cgetg(3,t_VEC);
  y[1]=lshifti(p1,2); y[2]=lmul2n((GEN)p2[2],-1);
  return gerepile(av,tetpil,y);
}

GEN
coredisc0(GEN n,long flag)
{
  return flag? coredisc2(n): coredisc(n);
}

/***********************************************************************/
/**                                                                   **/
/**                      BINARY QUADRATIC FORMS                       **/
/**                                                                   **/
/***********************************************************************/

GEN
qf_disc(GEN x, GEN y, GEN z)
{
  if (!y) { y=(GEN)x[2]; z=(GEN)x[3]; x=(GEN)x[1]; }
  return subii(sqri(y), shifti(mulii(x,z),2));
}

static GEN
qf_create(GEN x, GEN y, GEN z, long s)
{
  GEN t;
  if (typ(x)!=t_INT || typ(y)!=t_INT || typ(z)!=t_INT) err(typeer,"Qfb");
  if (!s)
  {
    long av=avma; s = signe(qf_disc(x,y,z)); avma=av;
    if (!s) err(talker,"zero discriminant in Qfb");
  }
  t = (s>0)? cgetg(5,t_QFR): cgetg(4,t_QFI);
  t[1]=(long)icopy(x); t[2]=(long)icopy(y); t[3]=(long)icopy(z);
  return t;
}

GEN
qfi(GEN x, GEN y, GEN z)
{
  return qf_create(x,y,z,-1);
}

GEN
qfr(GEN x, GEN y, GEN z, GEN d)
{
  GEN t = qf_create(x,y,z,1);
  if (typ(d) != t_REAL)
    err(talker,"Shanks distance should be a t_REAL (in qfr)");
  t[4]=lrcopy(d); return t;
}

GEN
Qfb0(GEN x, GEN y, GEN z, GEN d, long prec)
{
  GEN t = qf_create(x,y,z,0);
  if (lg(t)==4) return t;
  if (!d) d = gzero;
  if (typ(d) == t_REAL)
    t[4] = lrcopy(d);
  else
    { t[4]=lgetr(prec); gaffect(d,(GEN)t[4]); }
  return t;
}

/* composition */
static void
sq_gen(GEN z, GEN x)
{
  GEN d1,x2,y2,v1,v2,c3,m,p1,r;

  d1 = bezout((GEN)x[2],(GEN)x[1],&x2,&y2);
  if (gcmp1(d1)) v1 = v2 = (GEN)x[1];
  else
  {
    v1 = divii((GEN)x[1],d1);
    v2 = mulii(v1,mppgcd(d1,(GEN)x[3]));
  }
  m = mulii((GEN)x[3],x2); setsigne(m,-signe(m));
  r = modii(m,v2); p1 = mulii(v1,r);
  c3 = addii(mulii((GEN)x[3],d1), mulii(r,addii((GEN)x[2],p1)));
  z[1] = lmulii(v1,v2);
  z[2] = laddii((GEN)x[2], shifti(p1,1));
  z[3] = ldivii(c3,v2);
}

void
comp_gen(GEN z,GEN x,GEN y)
{
  GEN s,n,d,d1,x1,x2,y1,y2,v1,v2,c3,m,p1,r;

  if (x == y) { sq_gen(z,x); return; }
  s = shifti(addii((GEN)x[2],(GEN)y[2]),-1);
  n = subii((GEN)y[2],s);
  d = bezout((GEN)y[1],(GEN)x[1],&y1,&x1);
  d1 = bezout(s,d,&x2,&y2);
  if (gcmp1(d1))
  {
    v1 = (GEN)x[1];
    v2 = (GEN)y[1];
  }
  else
  {
    v1 = divii((GEN)x[1],d1);
    v2 = divii((GEN)y[1],d1);
    v1 = mulii(v1, mppgcd(d1,mppgcd((GEN)x[3],mppgcd((GEN)y[3],n))));
  }
  m = addii(mulii(mulii(y1,y2),n), mulii((GEN)y[3],x2));
  setsigne(m,-signe(m));
  r = modii(m,v1); p1 = mulii(v2,r); 
  c3 = addii(mulii((GEN)y[3],d1), mulii(r,addii((GEN)y[2],p1)));
  z[1] = lmulii(v1,v2);
  z[2] = laddii((GEN)y[2], shifti(p1,1));
  z[3] = ldivii(c3,v1);
}

static GEN
compimag0(GEN x, GEN y, int raw)
{
  long tx = typ(x), av = avma, tetpil;
  GEN z;

  if (typ(y) != tx || tx!=t_QFI) err(typeer,"composition");
  if (cmpii((GEN)x[1],(GEN)y[1]) > 0) { z=x; x=y; y=z; }
  z=cgetg(4,t_QFI); comp_gen(z,x,y); tetpil=avma;
  return gerepile(av,tetpil,raw? gcopy(z): redimag(z));
}

static GEN
compreal0(GEN x, GEN y, int raw)
{
  long tx = typ(x), av = avma, tetpil;
  GEN z;

  if (typ(y) != tx || tx!=t_QFR) err(typeer,"composition");
  z=cgetg(5,t_QFR); comp_gen(z,x,y);
  z[4]=laddrr((GEN)x[4],(GEN)y[4]); tetpil=avma;
  return gerepile(av,tetpil, raw? gcopy(z): redreal(z));
}

GEN
compreal(GEN x, GEN y) { return compreal0(x,y,0); }

GEN
comprealraw(GEN x, GEN y) { return compreal0(x,y,1); }

GEN
compimag(GEN x, GEN y) { return compimag0(x,y,0); }

GEN
compimagraw(GEN x, GEN y) { return compimag0(x,y,1); }

GEN
compraw(GEN x, GEN y)
{
  return (typ(x)==t_QFI)? compimagraw(x,y): comprealraw(x,y);
}

GEN
sqcompimag0(GEN x, long raw)
{
  long av = avma, tetpil;
  GEN z = cgetg(4,t_QFI);

  if (typ(x)!=t_QFI) err(typeer,"composition");
  sq_gen(z,x); tetpil=avma;
  return gerepile(av,tetpil,raw? gcopy(z): redimag(z));
}

static GEN
sqcompreal0(GEN x, long raw)
{
  long av = avma, tetpil;
  GEN z = cgetg(5,t_QFR);

  if (typ(x)!=t_QFR) err(typeer,"composition");
  sq_gen(z,x); z[4]=lshiftr((GEN)x[4],1); tetpil=avma;
  return gerepile(av,tetpil,raw? gcopy(z): redreal(z));
}

GEN
sqcompreal(GEN x) { return sqcompreal0(x,0); }

GEN
sqcomprealraw(GEN x) { return sqcompreal0(x,1); }

GEN
sqcompimag(GEN x) { return sqcompimag0(x,0); }

GEN
sqcompimagraw(GEN x) { return sqcompimag0(x,1); }

static GEN
real_unit_form_by_disc(GEN D, long prec)
{
  GEN y = cgetg(5,t_QFR), isqrtD;
  long av = avma;

  if (typ(D) != t_INT || signe(D) <= 0) err(typeer,"real_unit_form_by_disc");
  switch(mod4(D))
  {
    case 2:
    case 3: err(funder2,"real_unit_form_by_disc");
  }
  y[1]=un; isqrtD = racine(D);
  /* we know that D and isqrtD are non-zero */
  if (mod2(D) != mod2(isqrtD))
    isqrtD = gerepileuptoint(av, addsi(-1,isqrtD));
  y[2] = (long)isqrtD; av = avma;
  y[3] = (long)gerepileuptoint(av, shifti(subii(sqri(isqrtD),D),-2));
  y[4] = (long)realzero(prec); return y;
}

GEN
real_unit_form(GEN x)
{
  long av = avma, prec;
  GEN D;
  if (typ(x) != t_QFR) err(typeer,"real_unit_form");
  prec = precision((GEN)x[4]);
  if (!prec) err(talker,"not a t_REAL in 4th component of a t_QFR");
  D = qf_disc(x,NULL,NULL);
  return gerepileupto(av, real_unit_form_by_disc(D,prec));
}

static GEN
imag_unit_form_by_disc(GEN D)
{
  GEN y = cgetg(4,t_QFI);
  long isodd;

  if (typ(D) != t_INT || signe(D) >= 0) err(typeer,"real_unit_form_by_disc");
  switch(4 - mod4(D))
  {
    case 2:
    case 3: err(funder2,"imag_unit_form_by_disc");
  }
  y[1] = un; isodd = mpodd(D);
  y[2] = isodd? un: zero;
  /* y[3] = (1-D) / 4 or -D / 4, whichever is an integer */
  y[3] = lshifti(D,-2); setsigne(y[3],1);
  if (isodd)
  {
    long av = avma;
    y[3] = (long)gerepileuptoint(av, addis((GEN)y[3],1));
  }
  return y;
}

GEN
imag_unit_form(GEN x)
{
  GEN p1,p2, y = cgetg(4,t_QFI);
  long av;
  if (typ(x) != t_QFI) err(typeer,"imag_unit_form");
  y[1] = un;
  y[2] = mpodd((GEN)x[2])? un: zero;
  av = avma; p1 = mulii((GEN)x[1],(GEN)x[3]);
  p2 = shifti(sqri((GEN)x[2]),-2);
  y[3] = (long)gerepileuptoint(av, subii(p1,p2));
  return y;
}

GEN
powrealraw(GEN x, long n)
{
  long av = avma, m;
  GEN y;

  if (typ(x) != t_QFR)
    err(talker,"not a real quadratic form in powrealraw");
  if (!n) return real_unit_form(x);
  if (n== 1) return gcopy(x);
  if (n==-1) return ginv(x);

  y = NULL; m=labs(n);
  for (; m>1; m>>=1)
  {
    if (m&1) y = y? comprealraw(y,x): x;
    x=sqcomprealraw(x);
  }
  y = y? comprealraw(y,x): x;
  if (n<0) y = ginv(y);
  return gerepileupto(av,y);
}

GEN
powimagraw(GEN x, long n)
{
  long av = avma, m;
  GEN y;

  if (typ(x) != t_QFI)
    err(talker,"not an imaginary quadratic form in powimag");
  if (!n) return imag_unit_form(x);
  if (n== 1) return gcopy(x);
  if (n==-1) return ginv(x);

  y = NULL; m=labs(n);
  for (; m>1; m>>=1)
  {
    if (m&1) y = y? compimagraw(y,x): x;
    x=sqcompimagraw(x);
  }
  y = y? compimagraw(y,x): x;
  if (n<0) y = ginv(y);
  return gerepileupto(av,y);
}

GEN
powraw(GEN x, long n)
{
  return (typ(x)==t_QFI)? powimagraw(x,n): powrealraw(x,n);
}

/* composition: Shanks' NUCOMP & NUDUPL */
/* l = floor((|d|/4)^(1/4)) */
GEN
nucomp(GEN x, GEN y, GEN l)
{
  long av=avma,tetpil,cz;
  GEN a,a1,a2,b,b2,d,d1,e,g,n,p1,p2,p3,q1,q2,q3,q4,s,t2,t3,u,u1,v,v1,v2,v3,z;

  if (x==y) return nudupl(x,l);
  if (typ(x) != t_QFI || typ(y) != t_QFI)
    err(talker,"not an imaginary quadratic form in nucomp");

  if (cmpii((GEN)x[1],(GEN)y[1]) < 0) { s=x; x=y; y=s; }
  s=shifti(addii((GEN)x[2],(GEN)y[2]),-1); n=subii((GEN)y[2],s);
  a1=(GEN)x[1]; a2=(GEN)y[1]; d=bezout(a2,a1,&u,&v);
  if (gcmp1(d)) { a=negi(gmul(u,n)); d1=d; }
  else
    if (divise(s,d))
    {
      a=negi(gmul(u,n)); d1=d; a1=divii(a1,d1);
      a2=divii(a2,d1); s=divii(s,d1);
    }
    else
    {
      d1=bezout(s,d,&u1,&v1);
      if (!gcmp1(d1))
      {
      a1=divii(a1,d1); a2=divii(a2,d1);
      s=divii(s,d1); d=divii(d,d1);
      }
      p1=resii((GEN)x[3],d); p2=resii((GEN)y[3],d);
      p3=modii(negi(mulii(u1,addii(mulii(u,p1),mulii(v,p2)))),d);
      a=subii(mulii(p3,divii(a1,d)),mulii(u,divii(n,d)));
    }
  a=modii(a,a1); p1=subii(a1,a); if (cmpii(a,p1)>0) a=negi(p1);
  v=gzero; d=a1; v2=gun; v3=a;
  for (cz=0; absi_cmp(v3,l) > 0; cz++)
  {
    p1=dvmdii(d,v3,&t3); t2=subii(v,mulii(p1,v2));
    v=v2; d=v3; v2=t2; v3=t3;
  }
  z=cgetg(4,t_QFI);
  if (!cz)
  {
    q1=mulii(a2,v3); q2=addii(q1,n);
    g=divii(addii(mulii(v3,s),(GEN)y[3]),d);
    z[1]=lmulii(d,a2);
    z[2]=laddii(shifti(q1,1),(GEN)y[2]);
    z[3]=laddii(mulii(v3,divii(q2,d)), mulii(g,d1));
  }
  else
  {
    if (cz&1) { v3=negi(v3); v2=negi(v2); }
    b=divii(addii(mulii(a2,d),mulii(n,v)),a1);
    q1=mulii(b,v3); q2=addii(q1,n);
    e=divii(addii(mulii(s,d),mulii((GEN)y[3],v)),a1);
    q3=mulii(e,v2); q4=subii(q3,s);
    g=divii(q4,v); b2=addii(q3,q4);
    if (!gcmp1(d1)) { v2=mulii(d1,v2); v=mulii(d1,v); b2=mulii(d1,b2); }
    z[1]=laddii(mulii(d,b),mulii(e,v));
    z[2]=laddii(b2,addii(q1,q2));
    z[3]=laddii(mulii(v3,divii(q2,d)), mulii(g,v2));
  }
  tetpil=avma; return gerepile(av,tetpil,redimag(z));
}

GEN
nudupl(GEN x, GEN l)
{
  long av=avma,tetpil,cz;
  GEN u,v,d,d1,p1,a,b,c,b2,z,v2,v3,t2,t3,e,g;

  if (typ(x) != t_QFI)
    err(talker,"not an imaginary quadratic form in nudupl");
  d1=bezout((GEN)x[2],(GEN)x[1],&u,&v);
  a=divii((GEN)x[1],d1); b=divii((GEN)x[2],d1);
  c=modii(negi(mulii(u,(GEN)x[3])),a); p1=subii(a,c);
  if (cmpii(c,p1)>0) c=negi(p1);
  v=gzero; d=a; v2=gun; v3=c;
  for (cz=0; absi_cmp(v3,l) > 0; cz++)
  {
    p1=dvmdii(d,v3,&t3); t2=subii(v,mulii(p1,v2));
    v=v2; d=v3; v2=t2; v3=t3;
  }
  z=cgetg(4,t_QFI);
  if (!cz)
  {
    g=divii(addii(mulii(v3,b),(GEN)x[3]),d);
    z[1]=(long)sqri(d);
    z[2]=laddii((GEN)x[2],shifti(mulii(d,v3),1));
    z[3]=laddii(sqri(v3),mulii(g,d1));
  }
  else
  {
    if (cz&1) { v=negi(v); d=negi(d); }
    e=divii(addii(mulii((GEN)x[3],v),mulii(b,d)),a);
    g=divii(subii(mulii(e,v2),b),v);
    b2=addii(mulii(e,v2),mulii(v,g));
    if (!gcmp1(d1)) { v2=mulii(d1,v2); v=mulii(d1,v); b2=mulii(d1,b2); }
    z[1]=laddii(sqri(d),mulii(e,v));
    z[2]=laddii(b2,shifti(mulii(d,v3),1));
    z[3]=laddii(sqri(v3),mulii(g,v2));
  }
  tetpil=avma; return gerepile(av,tetpil,redimag(z));
}

GEN
nupow(GEN x, GEN n)
{
  long av,tetpil,i,j;
  unsigned long m;
  GEN y,l;

  if (typ(n) != t_INT) err(talker,"not an integer exponent in nupow");
  if (gcmp1(n)) return gcopy(x);
  av=avma; y = imag_unit_form(x);
  if (!signe(n)) return y;

  l = racine(shifti(racine((GEN)y[3]),1));
  for (i=lgefint(n)-1; i>2; i--)
    for (m=n[i],j=0; j<BITS_IN_LONG; j++,m>>=1)
    {
      if (m&1) y=nucomp(y,x,l);
      x=nudupl(x,l);
    }
  for (m=n[2]; m>1; m>>=1)
  {
    if (m&1) y=nucomp(y,x,l);
    x=nudupl(x,l);
  }
  tetpil=avma; y=nucomp(y,x,l);
  if (signe(n)<0 && !egalii((GEN)y[1],(GEN)y[2])
                 && !egalii((GEN)y[1],(GEN)y[3]))
    setsigne(y[2],-signe(y[2]));
  return gerepile(av,tetpil,y);
}

/* reduction */

static GEN
abs_dvmdii(GEN b, GEN p1, GEN *pt, long s)
{
  if (s<0) setsigne(b, 1); p1 = dvmdii(b,p1,pt);
  if (s<0) setsigne(b,-1); return p1;
}

static GEN
rhoimag0(GEN x, long *flag)
{
  GEN p1,b,d,z;
  long fl, s = signe(x[2]);

  fl = cmpii((GEN)x[1], (GEN)x[3]);
  if (fl <= 0)
  {
    long fg = absi_cmp((GEN)x[1], (GEN)x[2]);
    if (fg >= 0)
    {
      *flag = (s<0 && (!fl || !fg))? 2 /* set x[2] = negi(x[2]) in caller */
                                   : 1;
      return x;
    }
  }
  p1=shifti((GEN)x[3],1); d = abs_dvmdii((GEN)x[2],p1,&b,s);
  if (s>=0)
  {
    setsigne(d,-signe(d));
    if (cmpii(b,(GEN)x[3])<=0) setsigne(b,-signe(b));
    else { d=addsi(-1,d); b=subii(p1,b); }
  }
  else if (cmpii(b,(GEN)x[3])>=0) { d=addsi(1,d); b=subii(b,p1); }

  z=cgetg(4,t_QFI);
  z[1] = x[3];
  z[3] = laddii((GEN)x[1], mulii(d,shifti(subii((GEN)x[2],b),-1)));
  if (signe(b)<0 && !fl) setsigne(b,1);
  z[2] = (long)b; *flag = 0; return z;
}

static void
fix_expo(GEN x)
{
  long e = expo(x[5]);
  if (e >= EXP220)
  {
    x[4] = laddsi(1,(GEN)x[4]);
    setexpo(x[5], e - EXP220);
  }
}

GEN
rhoreal_aux(GEN x, GEN D, GEN sqrtD, GEN isqrtD)
{
  GEN p1,p2, y = cgetg(6,t_VEC);
  GEN b = (GEN)x[2];
  GEN c = (GEN)x[3];

  y[1] = (long)c;
  p2 = (absi_cmp(isqrtD,c) >= 0)? isqrtD: absi(c);
  p1 = shifti(c,1);
  if (p1 == gzero) err(talker, "reducible form in rhoreal");
  setsigne(p1,1); /* |2c| */
  p2 = divii(addii(p2,b), p1);
  y[2] = lsubii(mulii(p2,p1), b);

  p1 = shifti(subii(sqri((GEN)y[2]),D),-2);
  y[3] = ldivii(p1,(GEN)y[1]);

  if (lg(x) <= 5) setlg(y,4);
  else
  {
    y[4] = x[4];
    y[5] = x[5];
    if (signe(b))
    {
      p1 = divrr(addir(b,sqrtD), subir(b,sqrtD));
      y[5] = lmulrr(p1, (GEN)y[5]);
      fix_expo(y);
    }
  }
  return y;
}

#define qf_NOD  2
#define qf_STEP 1

GEN
codeform5(GEN x, long prec)
{
  GEN y = cgetg(6,t_VEC);
  y[1]=x[1];
  y[2]=x[2];
  y[3]=x[3];
  y[4]=zero;
  y[5]=(long)realun(prec); return y;
}

static GEN
add_distance(GEN x, GEN d0)
{
  GEN y = cgetg(5, t_QFR);
  y[1] = licopy((GEN)x[1]);
  y[2] = licopy((GEN)x[2]);
  y[3] = licopy((GEN)x[3]);
  y[4] = lcopy(d0); return y;
}

/* d0 = initial distance, assume |n| > 1 */
static GEN
decodeform(GEN x, GEN d0)
{
  GEN p1,p2;
  
  if (lg(x) < 6) return add_distance(x,d0);
  /* x = (a,b,c, expo(d), d), d = exp(2*distance) */
  p1 = absr((GEN)x[5]);
  p2 = (GEN)x[4];
  if (signe(p2))
  {
    long e = expo(p1);
    p1 = shiftr(p1,-e);
    p2 = addis(mulsi(EXP220,p2), e);
    p1 = mplog(p1);
    p1 = mpadd(p1, mulir(p2, glog(gdeux, lg(d0))));
  }
  else
  { /* to avoid loss of precision */
    p1 = gcmp1(p1)? NULL: mplog(p1);
  }
  if (p1)
    d0 = addrr(d0, shiftr(p1,-1));
  return add_distance(x, d0);
}

static long
get_prec(GEN d)
{
  long k = lg(d);
  long l = ((BITS_IN_LONG-1-expo(d))>>TWOPOTBITS_IN_LONG)+2;
  if (l < k) l = k;
  if (l < 3) l = 3;
  return l;
}

static int
real_isreduced(GEN x, GEN isqrtD)
{
  GEN a = (GEN)x[1];
  GEN b = (GEN)x[2];
  if (signe(b) > 0 && cmpii(b,isqrtD) <= 0 )
  {
    GEN p1 = subii(isqrtD, shifti(absi(a),1));
    long l = absi_cmp(b, p1);
    if (l > 0 || (l == 0 && signe(p1) < 0)) return 1;
  }
  return 0;
}

GEN
redrealform5(GEN x, GEN D, GEN sqrtD, GEN isqrtD)
{
  while (!real_isreduced(x,isqrtD))
    x = rhoreal_aux(x,D,sqrtD,isqrtD);
  return x;
}

static GEN
redreal0(GEN x, long flag, GEN D, GEN isqrtD, GEN sqrtD)
{
  long av = avma, prec;
  GEN d0;

  if (typ(x) != t_QFR) err(talker,"not a real quadratic form in redreal");

  if (!D)
    D = qf_disc(x,NULL,NULL);
  else
    if (typ(D) != t_INT) err(arither1);

  d0 = (GEN)x[4]; prec = get_prec(d0);
  x = codeform5(x,prec);
  if ((flag & qf_NOD)) setlg(x,4);
  else
  {
    if (!sqrtD)
      sqrtD = gsqrt(D,prec);
    else
    {
      long l = typ(sqrtD);
      if (!is_intreal_t(l)) err(arither1);
    }
  }
  if (!isqrtD)
    isqrtD = sqrtD? mptrunc(sqrtD): racine(D);
  else
    if (typ(isqrtD) != t_INT) err(arither1);

  if (flag & qf_STEP)
    x = rhoreal_aux(x,D,sqrtD,isqrtD);
  else
    x = redrealform5(x,D,sqrtD,isqrtD);
  return gerepileupto(av, decodeform(x,d0));
}

GEN
comprealform5(GEN x, GEN y, GEN D, GEN sqrtD, GEN isqrtD)
{
  long av = avma,tetpil;
  GEN z = cgetg(6,t_VEC); comp_gen(z,x,y);
  if (x == y)
  {
    z[4] = lshifti((GEN)x[4],1);
    z[5] = lsqr((GEN)x[5]);
  }
  else
  {
    z[4] = laddii((GEN)x[4],(GEN)y[4]);
    z[5] = lmulrr((GEN)x[5],(GEN)y[5]);
  }
  fix_expo(z); z = redrealform5(z,D,sqrtD,isqrtD);
  tetpil=avma; return gerepile(av,tetpil,gcopy(z));
}

/* assume n!=0 */
GEN
powrealform(GEN x, GEN n)
{
  long av = avma, i,m;
  GEN y,D,sqrtD,isqrtD,d0;

  if (typ(x) != t_QFR)
    err(talker,"not a real quadratic form in powreal");
  if (gcmp1(n)) return gcopy(x);
  if (gcmp_1(n)) return ginv(x);

  d0 = (GEN)x[4];
  D = qf_disc(x,NULL,NULL);
  sqrtD = gsqrt(D, get_prec(d0));
  isqrtD = mptrunc(sqrtD);
  if (signe(n) < 0) { x = ginv(x); d0 = (GEN)x[4]; }
  n = absi(n);
  x = codeform5(x, lg(d0)); y = NULL;
  for (i=lgefint(n)-1; i>1; i--)
  {
    m = n[i];
    for (; m; m>>=1)
    {
      if (m&1) y = y? comprealform5(y,x,D,sqrtD,isqrtD): x;
      if (m == 1 && i == 2) break;
      x = comprealform5(x,x,D,sqrtD,isqrtD); 
    }
  }
  d0 = mulri(d0,n);
  return gerepileupto(av, decodeform(y,d0));
}

GEN
redimag(GEN x)
{
  long av=avma, tetpil, fl;
  do x = rhoimag0(x, &fl); while (fl == 0);
  tetpil=avma; x = gerepile(av,tetpil,gcopy(x));
  if (fl == 2) setsigne(x[2], -signe(x[2]));
  return x;
}

GEN
redreal(GEN x)
{
  return redreal0(x,0,NULL,NULL,NULL);
}

GEN
rhoreal(GEN x)
{
  return redreal0(x,qf_STEP,NULL,NULL,NULL);
}

GEN
redrealnod(GEN x, GEN isqrtD)
{
  return redreal0(x,qf_NOD,NULL,isqrtD,NULL);
}

GEN
rhorealnod(GEN x, GEN isqrtD)
{
  return redreal0(x,qf_STEP|qf_NOD,NULL,isqrtD,NULL);
}

GEN
qfbred0(GEN x, long flag, GEN D, GEN isqrtD, GEN sqrtD)
{
  long tx=typ(x),av,tetpil,fl;

  if (!is_qf_t(tx)) err(talker,"not a quadratic form in qfbred");
  if (!D) D = qf_disc(x,NULL,NULL);
  switch(signe(D))
  {
    case 1 :
      return redreal0(x,flag,D,isqrtD,sqrtD);

    case -1:
      if (!flag) return  redimag(x);
      if (flag !=1) err(flagerr,"qfbred");
      av=avma; x = rhoimag0(x,&fl); tetpil=avma;
      x = gerepile(av,tetpil,gcopy(x));
      if (fl == 2) setsigne(x[2], -signe(x[2]));
      return x;
  }
  err(redpoler,"qfbred");
  return NULL; /* not reached */
}

/* special case: p = 1 return unit form */
GEN
primeform(GEN x, GEN p, long prec)
{
  long av,tetpil,s=signe(x);
  GEN y,b;

  if (typ(x) != t_INT || !s) err(arither1);
  if (typ(p) != t_INT || signe(p) <= 0) err(arither1);
  if (is_pm1(p))
    return s<0? imag_unit_form_by_disc(x)
              : real_unit_form_by_disc(x,prec);
  if (s < 0)
  {
    y = cgetg(4,t_QFI); s = 8-mod8(x);
  }
  else
  {
    y = cgetg(5,t_QFR); s = mod8(x);
    y[4]=(long)realzero(prec);
  }
  switch(s&3)
  {
    case 2: case 3: err(funder2,"primeform");
  }
  y[1] = (long)icopy(p); av = avma;
  if (egalii(p,gdeux))
  {
    switch(s)
    {
      case 0: y[2]=zero; break;
      case 8: s=0; y[2]=zero; break;
      case 1: s=1; y[2]=un; break;
      case 4: s=4; y[2]=deux; break;
      default: err(sqrter5);
    }
    b=subsi(s,x); tetpil=avma; b=shifti(b,-3);
  }
  else
  {
    b = mpsqrtmod(x,p); if (!b) err(sqrter5);
    if (mod2(b) == mod2(x)) y[2] = (long)b;
    else
    { tetpil = avma; y[2] = lpile(av,tetpil,subii(p,b)); }

    av=avma; b=shifti(subii(sqri((GEN)y[2]),x),-2);
    tetpil=avma; b=divii(b,p);
  }
  y[3]=lpile(av,tetpil,b); return y;
}

/*********************************************************************/
/**                                                                 **/
/**                       BINARY DECOMPOSITION                      **/
/**                                                                 **/
/*********************************************************************/

GEN
binaire(GEN x)
{
  ulong m,u;
  long i,lx,ex,ly,tx=typ(x);
  GEN y,p1,p2;

  switch(tx)
  {
    case t_INT:
      lx=lgefint(x);
      if (lx==2) { y=cgetg(2,t_VEC); y[1]=zero; return y; }
      ly = BITS_IN_LONG+1; m=HIGHBIT; u=x[2];
      while (!(m & u)) { m>>=1; ly--; }
      y = cgetg(ly+((lx-3)<<TWOPOTBITS_IN_LONG),t_VEC); ly=1;
      do { y[ly] = m & u ? un : zero; ly++; } while (m>>=1);
      for (i=3; i<lx; i++)
      {
      m=HIGHBIT; u=x[i];
      do { y[ly] = m & u ? un : zero; ly++; } while (m>>=1);
      }
      break;

    case t_REAL:
      ex=expo(x);
      if (!signe(x))
      {
      lx=1+max(-ex,0); y=cgetg(lx,t_VEC);
      for (i=1; i<lx; i++) y[i]=zero;
      return y;
      }

      lx=lg(x); y=cgetg(3,t_VEC);
      if (ex > bit_accuracy(lx)) err(talker,"loss of precision in binary");
      p1 = cgetg(max(ex,0)+2,t_VEC);
      p2 = cgetg(bit_accuracy(lx)-ex,t_VEC);
      y[1] = (long) p1; y[2] = (long) p2;
      ly = -ex; ex++; m = HIGHBIT;
      if (ex<=0)
      {
      p1[1]=zero; for (i=1; i <= -ex; i++) p2[i]=zero;
      i=2;
      }
      else
      {
      ly=1;
      for (i=2; i<lx && ly<=ex; i++)
      {
        m=HIGHBIT; u=x[i];
        do
          { p1[ly] = (m & u) ? un : zero; ly++; }
        while ((m>>=1) && ly<=ex);
      }
      ly=1;
      if (m) i--; else m=HIGHBIT;
      }
      for (; i<lx; i++)
      {
      u=x[i];
      do { p2[ly] = m & u ? un : zero; ly++; } while (m>>=1);
      m=HIGHBIT;
      }
      break;

    case t_VEC: case t_COL: case t_MAT:
      lx=lg(x); y=cgetg(lx,tx);
      for (i=1; i<lx; i++) y[i]=(long)binaire((GEN)x[i]);
      break;
    default: err(typeer,"binaire");
      return NULL; /* not reached */
  }
  return y;
}

/* return 1 if bit n of x is set, 0 otherwise */
long
bittest(GEN x, long n)
{
  long l;

  if (!signe(x) || n<0) return 0;
  l = lgefint(x)-1 - (n>>TWOPOTBITS_IN_LONG);
  if (l < 2) return 0;
  n = (1L << (n & (BITS_IN_LONG-1))) & x[l];
  return n? 1: 0;
}

static long
bittestg(GEN x, GEN n)
{
  return bittest(x,itos(n));
}

GEN
gbittest(GEN x, GEN n)
{
  return arith_proto2(bittestg,x,n);
}

/***********************************************************************/
/**                                                                   **/
/**                          BITMAP OPS                               **/
/** x & y (and), x | y (or), x ^ y (xor), ~x (neg), x & ~y (negimply) **/
/**                                                                   **/
/***********************************************************************/

/* Normalize a non-negative integer.  */
static void
inormalize(GEN x, long known_zero_words)
{
    int xl = lgefint(x);
    int i, j;

    /* Normalize */
    i = 2 + known_zero_words;
    while (i < xl) {
      if (x[i])
          break;
      i++;
    }
    j = 2;
    while (i < xl)
      x[j++] = x[i++];
    xl -= i - j;
    setlgefint(x, xl);
    if (xl == 2)
      setsigne(x,0);
}

/* Truncate a non-negative integer to a number of bits.  */
static void
ibittrunc(GEN x, long bits, long normalized)
{
    int xl = lgefint(x);
    int len_out = ((bits + BITS_IN_LONG - 1) >> TWOPOTBITS_IN_LONG) + 2;
    int known_zero_words, i = 2 + xl - len_out;

    if (xl < len_out && normalized)
      return;
      /* Check whether mask is trivial */
    if (!(bits & (BITS_IN_LONG - 1))) {
      if (xl == len_out && normalized)
          return;
    } else if (len_out <= xl) {
      /* Non-trival mask is given by a formula, if x is not
         normalized, this works even in the exceptional case */
      x[i] = x[i] & ((1 << (bits & (BITS_IN_LONG - 1))) - 1);
      if (x[i] && xl == len_out)
          return;
    }
    /* Normalize */
    if (xl <= len_out)              /* Not normalized */
      known_zero_words = 0;
    else
      known_zero_words = xl - len_out;
    inormalize(x, known_zero_words);
}

/* Increment/decrement absolute value of non-zero integer in place.
   It is assumed that the increment will not increase the length.
   Decrement may result in a non-normalized value.
   Returns 1 if the increment overflows (thus the result is 0). */
static int
incdec(GEN x, long incdec)
{
    long *xf = x + 2, *xl;
    long len = lgefint(x);
    const ulong uzero = 0;

    xl = x + len;
    if (incdec == 1) {
      while (--xl >= xf) {
          if (*xl != ~uzero) {
            (*xl)++;
            return 0;
          }
          *xl = 0;
      }
      return 1;
    } else {
      while (--xl >= xf) {
          if (*xl != 0) {
            (*xl)--;
            return 0;
          }
          *xl = (long)~uzero;
      }
      return 0;
    }
}

GEN
gbitneg(GEN x, long bits)
{
    long xl, len_out, i;
    const ulong uzero = 0;
    
    if (typ(x) != t_INT)
      err(typeer, "bitwise negation");
    if (bits < -1)
      err(talker, "negative exponent in bitwise negation");
    if (bits == -1)
      return gsub(gneg(gun),x);
    if (bits == 0)
      return gzero;
    if (signe(x) == -1) {           /* Consider as if mod big power of 2 */
      x = gcopy(x);
      setsigne(x, 1);
      incdec(x, -1);
      /* Now truncate this! */
      ibittrunc(x, bits, x[2]);
      return x;
    }
    xl = lgefint(x);
    len_out = ((bits + BITS_IN_LONG - 1) >> TWOPOTBITS_IN_LONG) + 2;
    if (len_out > xl) {             /* Need to grow */
      GEN out = cgeti(len_out);
      int j = 2;

      if (!(bits & (BITS_IN_LONG - 1)))
          out[2] = ~uzero;
      else
          out[2] = (1 << (bits & (BITS_IN_LONG - 1))) - 1;
      for (i = 3; i < len_out - xl + 2; i++)
          out[i] = ~uzero;
      while (i < len_out)
          out[i++] = ~x[j++];
      setlgefint(out, len_out);
      setsigne(out,1);
      return out;
    }
    x = gcopy(x);
    for (i = 2; i < xl; i++)
      x[i] = ~x[i];
    ibittrunc(x, bits, x[2]);
    return x;
}

/* bitwise 'and' of two positive integers (any integers, but we ignore sign).
 * Inputs are not necessary normalized. */
static GEN
ibitand(GEN x, GEN y)
{
  long lx, ly, lout;
  long *xp, *yp, *outp, *xlim;
  GEN out;

  lx=lgefint(x); ly=lgefint(y);
  if (lx > ly)
      lout = ly;
  else
      lout = lx;
  xlim = x + lx;
  xp = xlim + 2 - lout;
  yp = y + 2 + ly - lout;
  out = cgeti(lout);
  outp = out + 2;
  while (xp < xlim)
      *outp++ = (*xp++) & (*yp++);
  setsigne(out,1);
  setlgefint(out,lout);
  if (lout == 2)
      setsigne(out,0);
  else if ( !out[2] )
      inormalize(out, 1);
  return out;
}

#define swaplen(x,y, nx,ny) {long _a=nx;GEN _z=x; nx=ny; ny=_a; x=y; y=_z;}

/* bitwise 'or' of two positive integers (any integers, but we ignore sign).
 * Inputs are not necessary normalized. */
static GEN
ibitor(GEN x, GEN y, long exclusive)
{
  long lx, ly, lout;
  long *xp, *yp, *outp, *xlim, *xprep;
  GEN out;

  lx=lgefint(x); ly=lgefint(y);
  if (lx < ly)
      swaplen(x,y,lx,ly);
  lout = lx;
  xlim = x + lx;
  xp = xlim + 2 - ly;
  yp = y + 2;
  out = cgeti(lout);
  outp = out + 2;
  if (lx > ly) {
      xprep = x + 2;
      while (xprep < xp)
        *outp++ = *xprep++;
  }
  if (exclusive) {
      while (xp < xlim)
        *outp++ = (*xp++) ^ (*yp++);
  } else {
      while (xp < xlim)
        *outp++ = (*xp++) | (*yp++);
  }
  setsigne(out,1);
  setlgefint(out,lout);
  if (lout == 2)
      setsigne(out,0);
  else if ( !out[2] )
      inormalize(out, 1);
  return out;
}

/* bitwise negated 'implies' of two positive integers (any integers, but we
 * ignore sign).  "Neg-Implies" is x & ~y unless "negated".
 * Inputs are not necessary normalized. */
static GEN
ibitnegimply(GEN x, GEN y)
{
  long lx, ly, lout, inverted = 0;
  long *xp, *yp, *outp, *xlim, *xprep;
  GEN out;

  lx=lgefint(x); ly=lgefint(y);
  if (lx < ly) {
      inverted = 1;
      swaplen(x,y,lx,ly);
  }  
  /* x is longer than y */
  lout = lx;
  xlim = x + lx;
  xp = xlim + 2 - ly;
  yp = y + 2;
  out = cgeti(lout);
  outp = out + 2;
  if (lx > ly) {
      xprep = x + 2;
      if (!inverted) {              /* x & ~y */
        while (xprep < xp)
            *outp++ = *xprep++;
      } else {                      /* ~x & y */
        while (xprep++ < xp)
            *outp++ = 0;
      }
  }
  if (inverted) {             /* ~x & y */
     while (xp < xlim)
      *outp++ = ~(*xp++) & (*yp++);
  } else {
     while (xp < xlim)
      *outp++ = (*xp++) & ~(*yp++);
  }
  setsigne(out,1);
  setlgefint(out,lout);
  if (lout == 2)
      setsigne(out,0);
  else if ( !out[2] )
      inormalize(out, 1);
  return out;
}

static GEN
inegate_inplace(GEN z, long ltop)
{
  long lbot, o;

  /* Negate z */
  o = incdec(z, 1);                 /* Can overflow z... */
  setsigne(z, -1);
  if (!o)
      return z;
  else if (lgefint(z) == 2)
      setsigne(z, 0);      
  incdec(z,-1);               /* Restore a normalized value */
  lbot = avma;
  z = gsub(z,gun);
  return gerepile(ltop,lbot,z);
}

GEN
gbitor(GEN x, GEN y)
{
  long sx,sy;
  long ltop;
  GEN z;

  if (typ(x) != t_INT || typ(y) != t_INT)
      err(typeer, "bitwise or");
  sx=signe(x); if (!sx) return icopy(y);
  sy=signe(y); if (!sy) return icopy(x);
  if (sx == 1) {
      if (sy == 1)
        return ibitor(x,y,0);
      goto posneg;
  } else if (sy == -1) {
      ltop = avma;
      incdec(x, -1); incdec(y, -1);
      z = ibitand(x,y);
      incdec(x, 1); incdec(y, 1);   /* Restore x and y... */
  } else {
      z = x; x = y; y = z;
      /* x is positive, y is negative.  The result will be negative. */
    posneg:
      ltop = avma;
      incdec(y, -1);
      z = ibitnegimply(y,x);        /* ~x & y */
      incdec(y, 1);
  }
  return inegate_inplace(z, ltop);
}

GEN
gbitand(GEN x, GEN y)
{
  long sx,sy;
  long ltop;
  GEN z;

  if (typ(x) != t_INT || typ(y) != t_INT)
      err(typeer, "bitwise and");
  sx=signe(x); if (!sx) return gzero;
  sy=signe(y); if (!sy) return gzero;
  if (sx == 1) {
      if (sy == 1)
        return ibitand(x,y);
      goto posneg;
  } else if (sy == -1) {
      ltop = avma;
      incdec(x, -1); incdec(y, -1);
      z = ibitor(x,y,0);
      incdec(x, 1); incdec(y, 1);   /* Restore x and y... */
      return inegate_inplace(z, ltop);
  } else {
      z = x; x = y; y = z;
      /* x is positive, y is negative.  The result will be positive. */
    posneg:
      ltop = avma;
      incdec(y, -1);
      /* x & ~y */
      z = ibitnegimply(x,y);        /* x & ~y */
      incdec(y, 1);
      return z;
  }
}

GEN
gbitxor(GEN x, GEN y)
{
  long sx,sy;
  long ltop;
  GEN z;

  if (typ(x) != t_INT || typ(y) != t_INT)
      err(typeer, "bitwise xor");
  sx=signe(x); if (!sx) return icopy(y);
  sy=signe(y); if (!sy) return icopy(x);
  if (sx == 1) {
      if (sy == 1)
        return ibitor(x,y,1);
      goto posneg;
  } else if (sy == -1) {
      incdec(x, -1); incdec(y, -1);
      z = ibitor(x,y,1);
      incdec(x, 1); incdec(y, 1);   /* Restore x and y... */
      return z;
  } else {
      z = x; x = y; y = z;
      /* x is positive, y is negative.  The result will be negative. */
    posneg:
      ltop = avma;
      incdec(y, -1);
      /* ~(x ^ ~y) == x ^ y */
      z = ibitor(x,y,1);
      incdec(y, 1);
  }
  return inegate_inplace(z, ltop);
}

GEN
gbitnegimply(GEN x, GEN y)          /* x & ~y */
{
  long sx,sy;
  long ltop;
  GEN z;

  if (typ(x) != t_INT || typ(y) != t_INT)
      err(typeer, "bitwise negated imply");
  sx=signe(x); if (!sx) return gzero;
  sy=signe(y); if (!sy) return icopy(x);
  if (sx == 1) {
      if (sy == 1)
        return ibitnegimply(x,y);
      /* x is positive, y is negative.  The result will be positive. */
      incdec(y, -1);
      z = ibitand(x,y);
      incdec(y, 1);
      return z;
  } else if (sy == -1) {
      /* both negative.  The result will be positive. */
      incdec(x, -1); incdec(y, -1);
      /* ((~x) & ~(~y)) == ~x & y */
      z = ibitnegimply(y,x);
      incdec(x, 1); incdec(y, 1);   /* Restore x and y... */
      return z;
  } else {
      /* x is negative, y is positive.  The result will be negative. */
      ltop = avma;
      incdec(x, -1);
      /* ~((~x) & ~y) == x | y */
      z = ibitor(x,y,0);
      incdec(x, 1);
  }
  return inegate_inplace(z, ltop);
}

Generated by  Doxygen 1.6.0   Back to index